1.A. ELECTRICITY BILL

AIM:

To write a python program to calculate electricity bill

ALGORITHM

Step1: Start

Step2: Read units
Step3: check if(units<=100) then payAmount=units*1.5
fixedcharge $=25.00$
elif(units<=200) then
payAmount $=(100 * 1.5)+($ units*100)*2.5
fixedcharge $=50.00$
elif (units<=300) then
payAmount $=(100 * 1.5)+(200-100) * 2.5+($ units -200$) * 4$
fixedcharge $=100.00$
elif(units $<=350$) then
payAmount $=(100 * 1.5)=(200-100) * 2.5+(300-200) * 4=($ units -300$) * 5$
fixedcharge $=100.00$
else
payAmount=0
fixedcharge $=1500.00$
step4 : calculate total=payAmount+fixedcharge
Step 5: print the electricity bill
Step 6: stop

PROGRAM

units=int(input("please enter the number of units you consumed in a month"))
if(units<=100):
payAmount=units*1.5
fixedcharge=25.00
elif(units<=200):
payAmount $=(100 * 1.5)+($ units -100$) * 2.5$
fixedcharge=50.00
elif(units <=300):
payAmount $=(100 * 1.5)+(200-100) * 2.5+($ units -200$) * 4$
fixedcharge=75.00
elif(units<=350):
payAmount $=(100 * 1.5)+(200-100) * 2.5+(300-200) * 4+($ units -300$) * 5$
fixedcharge $=100.00$
else:
payAmount=0
fixedcharge $=1500.00$
Total=payAmount+fixedcharge
print("\nElecticity bill",Total)

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

please enter the number of units you consumed in a month300
Electicity bill 875.0

1.B. RETAIL SHOP BILLING

AIM:

To write a python program to calculate Retail shop bill

ALGORITHM:

Step 1: Start the program
Step 2 : Define a function to calculate the bill amount.
Step 3: Read items_list, reqd _list,price_list,reqd_quantity.
Stem 4: Call the function to calculate bill amount.
Step 5 : Print the bill amount.
Step 6: Stop the program.

PROGRAM:

def calculate_bill_amount(items_list, price_list, reqd_items,reqd_quantity):
bill_amount=0
$i=0$
total $=0$
leng=len(reqd_items)
check $=$ all(item in items_list for item in reqd_items)
if check is True:
while(i<leng):
inty=items_list.index(reqd_items[i])
total=total+ price_list[inty]*reqd_quantity[i]
bill_amount=total
$\mathrm{i}=\mathrm{i}+1$
else:
bill_amount=total
return bill_amount
items_list=["rice","oil","sugar","soap","paste"]
price_list=[50,200,40,30,35]
reqd_items=["rice","oil"]
reqd_quantity=[5,2]
bill_amount=calculate_bill_amount(items_list, price_list, reqd_items, reqd_quantity)
print("Total bill amount:", bill_amount)

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

Total bill amount: 650

1.C.SINE SERIES

AIM:

To write a python program to calculate Sine series
$\sin x=x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+x^{9} / 9!$ \qquad

ALGORITHM:

Step 1: start

Step 2: read the value of x and n
Step 3: calculate the sum of sine series
Sign=-1
Fact=i=1
Sum=0
Step 4: check while $\mathrm{i}<=\mathrm{n}$ then

$$
\mathrm{P}=1
$$

Fact=1
For j in range $(1, \mathrm{I}+1)$ then

$$
\mathrm{P}=\mathrm{p}^{*} \mathrm{x}
$$

fact=fact*j
sign $=-1 *$ sign
Step 5: calculate sum=sum + sign*p/fact
$\mathrm{I}=\mathrm{i}+2$
Step 6: print(' $\sin \left(,{ }^{\prime} \times,{ }^{\prime}\right)=$ ', sum $)$
Step 7:stop

PROGRAM:

$x=\operatorname{int}($ input("Enter the value of $x: "))$
$\mathrm{n}=\operatorname{int}($ input("Enter the value of $\mathrm{n}: ~ "))$
$\operatorname{sign}=-1$
fact $=\mathrm{i}=1$
sum $=0$
while $\mathrm{i}<=\mathrm{n}$:
$\mathrm{p}=1$
fact $=1$
for j in range $(1, \mathrm{i}+1)$:
$\mathrm{p}=\mathrm{p}^{*} \mathrm{x}$
fact $=$ fact ${ }^{*}$ j
sign $=-1 *$ sign
sum $=$ sum + sign* $p /$ fact
$\mathrm{i}=\mathrm{i}+2$
print("sin(",x,") =",sum)

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

Enter the value of x: 5
Enter the value of n: 4
$\sin (5)=-15.83333333333332$

1.D. WEIGHT OF BIKE

AIM:

To write a python program along with flowchart to calculate Weight of bike

ALGORITHM:

Step1: start
Step2: read the values of $\mathrm{x}, \mathrm{wf}, \mathrm{wr}, \mathrm{wb}$
Step3: calculate the weight of bike $X=w r * w b / w f+w r$
Step4: print weight of bike
Step5: stop

PROGRAM:

Wf=10\#front weight
$\mathrm{Wr}=40$ \# rear weight
$\mathrm{WB}=50 \#$ wheelbase
$\mathrm{X}=\mathrm{Wr} * \mathrm{WB} / \mathrm{Wf}+\mathrm{Wr}$
print("Weight of bike",X)

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

Weight of bike 240.0

1.E.WEIGHT OF STEEL BAR

AIM:

To write a python program along with flowchart to calculate Weight of steel bar

ALGORITHM:

Step1 :start
Step2: read the values of D and L
Step 3: calculate weight of steel bar $\mathrm{W}=(\mathrm{D} * * 2) * \mathrm{~L}) / 162$
Step4: print Weight of steel bar
Step5 : stop

PROGRAM:

$\mathrm{D}=10$
$\mathrm{L}=100$
$\mathrm{W}=(\mathrm{D} * * 2) * \mathrm{~L}) / 162$
print ("Weight of steel bar", W)

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

Weight of steel bar 61.72839506172839

1.F. COMPUTE ELECTRICAL CURRENT IN THREE PHASE AC CIRCUIT

AIM:

To write a python program to calculate Sine series

ALGORITHM:

Step 1: start

Step 2: read the value of R, X_L ,V_L ,f
Step 3: calculate the line current

$$
\begin{aligned}
& \text { V_Ph =V_L/sqrt(3) } \\
& \text { Z_Ph =sqrt((R**2)+(X_L**2)) } \\
& \text { I_Ph =V_Ph/Z_Ph } \\
& \text { I_L }=\text { I_Ph }
\end{aligned}
$$

Step 4: print the line current in A is , round (I_L ,2)
Step 5: calculate the power factor

$$
\begin{aligned}
& \mathrm{Pf}=\cos (\mathrm{phi})=\mathrm{R} _\mathrm{Ph} / \mathrm{Z}_{-} \mathrm{Ph} \\
& \mathrm{R} _\mathrm{Ph}=\mathrm{R} \\
& \mathrm{Phi}=\mathrm{a} \cos \left(\mathrm{R} _\mathrm{Ph} / \mathrm{Z}_{-} \mathrm{Ph}\right)
\end{aligned}
$$

Step 6: print the power factor is : Pf 'degree lag.
Step 7: calculate the power supplied

$$
\mathrm{P}=\operatorname{sqrt}(3) * \mathrm{~V} _\mathrm{L} * \mathrm{I}_{-} \mathrm{L}^{*} * \cos (\mathrm{phi})
$$

Step 8: print the power supplied in W is; P
Step 9: stop

PROGRAM:

from math import cos,acos,sqrt
R=20.;\# in ohm
X_L = 15.; \# in ohm
V_L = 400.; \# in V
$\mathrm{f}=50$.; $\#$ in Hz
\#calculations
V_Ph = V_L/sqrt(3); \# in V
Z_Ph $=\operatorname{sqrt}\left(\left(\mathrm{R}^{* *} 2\right)+\left(\mathrm{X} _\mathrm{L}^{* *} 2\right)\right) ; \#$ in ohm
I_Ph = V_Ph/Z_Ph;\# in A
I_L = I_Ph; \# in A
print ("The line current in A is",round(I_L,2))
\# pf = cos(phi) $=$ R_Ph/Z_Ph;
R_Ph = R; \# in ohm
phi $=\operatorname{acos}\left(\mathrm{R} _\mathrm{Ph} / \mathrm{Z}_{-} \mathrm{Ph}\right)$;
\# Power factor
$\mathrm{pf}=\cos (\mathrm{phi})$;\# in radians
print ("The power factor is : ",pf,"degrees lag.")
$\mathrm{P}=\operatorname{sqrt}(3) * \mathrm{~V} _\mathrm{L}$ *_L ${ }^{*} \cos (\mathrm{phi}) ; \#$ in W
print ("The power supplied in W is",P)

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

The line current in A is 9.24
The power factor is : 0.8 degrees lag.
The power supplied in W is 5120.000000000001

2.A. CIRCULATE THE VALUES OF N VARIABLES

AIM:

To write a Python program to circulate values of ' n ' variables in the list

ALGORITHM:

Step 1: start
Step2: read upper limit 'var'
Step3: read 'var' elements using loop and store them in list
Step4: pop out each element from list and append to list
Step5: print list
Step6: stop

PROGRAM:

Var=int(input('enter number of values'))
List $1=[]$
For val in range (0 , var, 1):
ele=int(input("Enter the element"))
list1 . append(ele)
print ("circulating the elements of list",list1)
for val in range (0, var, 1)
ele $=$ list1.pop(0)
list1.append(ele)
print(list1)

RESULT:

To write a Python program to circulate values of ' n ' variables in the list

OUTPUT:

enter number of values 4
enter the element 12
enter the element43
enter the element 11
enter the element56
circulating the elements of list [12, 43, 11, 56]
[43, 11, 56, 12]
[11, 56, 12, 43]
$[56,12,43,11]$
$[12,43,11,56]$

2.B. EXCHANGE THE VALUES OF TWO VARIABLES

AIM:
To write a Python program to exchange the values of two variables.

ALGORITHM:

Step 1: Start
Step 2: Initialize the function of swap
Step 3: Declare the variables a and b read input
Step 4: Call the function swap a,b
Step 5: The function swap perform the following operation

$$
\begin{aligned}
& \text { temp=a } \\
& \mathrm{a}=\mathrm{b} \\
& \mathrm{~b}=\text { temp }
\end{aligned}
$$

step 6:Print swap number a and b
step 7:Stop

PROGRAM:

def swap(a,b):
temp=a
$\mathrm{a}=\mathrm{b}$
b=temp
print("the value of x after swapping:", a)
print("the value of y after swapping:",b)
return
$x=$ int(input("Enter value of $x: "))$
$\mathrm{y}=\operatorname{int(\text {input("Entervalueof}\mathrm {y}:"))}$
$\operatorname{swap}(\mathrm{x}, \mathrm{y})$

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

Enter value of $\mathrm{x}: 6$
Enter value of $\mathrm{y}: 8$
the value of x after swapping: 8
the value of y after swapping: 6

2.C. DISTANCE BETWEEN TWO POINTS

AIM:

To write the python program to find distance between two points.

ALGORITHM:

STEP 1: start the program
STEP2: Define function distance
STEP3: Read the value $\mathrm{a}, \mathrm{b}, \mathrm{c} \& \mathrm{~d}$
STEP4: Call the function distance
STEP5: The Distance function performs following

$$
\mathrm{d}=\mathrm{math} . \operatorname{sqrt}\left(\left((\mathrm{x} 2-\mathrm{x} 1)^{* * 2}\right)+\left((\mathrm{y} 2-\mathrm{y} 1)^{* * 2}\right)\right)
$$

STEP6: Print distance between two points.
STEP7: Stop the program

PROGRAM:

import math
def distance (x1,y1,x2,y2):
$\mathrm{d}=\mathrm{math} . \operatorname{sqrt}\left(\left((\mathrm{x} 2-\mathrm{x} 1)^{*} * 2\right)+\left((\mathrm{y} 2-\mathrm{y} 1)^{* *} 2\right)\right)$
return d
$\mathrm{a}=\operatorname{int}\left(\operatorname{input}\left(\right.\right.$ 'Enter the value of $\left.\left.\mathrm{x} 1^{\prime}\right)\right)$
$\mathrm{b}=\operatorname{int}(\operatorname{input}($ 'Enter the value of x 2 '))
$\mathrm{c}=\operatorname{int}($ input('Enter the value of x 1 '))
$\mathrm{d}=\operatorname{int}($ input('Enter the value of x 2 '))
print('The distance between the two points is', distance(a,b,c,d))
RESULT:
Thus the Program was executed successfully and the output was verified.

OUTPUT:

Enter the value of x13
Enter the value of x24
Enter the value of x 15
Enter the value of $x 22$
The distance between the two points is 2.8284271247461903

3.A. NUMBER SERIES

AIM:

To write a python program to print series of numbers.

ALGORITHM:

Step 1: Start the program.
Step 2: Take the input from the user by using python input () function.
Step 3: Iterate for loop with the user input number.
Step 4: Increment for loop iteration value by 1 , as well as print iteration value.

PROGRAM

n = int(input("Please Enter any Number: "))
print("The List of Natural Numbers from 1", "to", n)
for i in range $(1, \mathrm{n}+1)$:
print (i, end = ' ')

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

Please Enter any Number: 10
The List of Natural Numbers from 1 to 10
12345678910

3.B. NUMBER PATTERN

AIM:

To write a python program to print pattern of numbers.

ALGORITHM:

Step 1: Start the program
Step 2: create a variable num.
Step 3: The first outer loop is used to handle a number of rows and the inner loop is used to handle a number of columns.
Step 4: Print (i, end=" ") is used to display numbers and the other print ("") is used for the next line after each row
Step5: Stop the program

PROGRAM

```
num = 5
```

for n in range(1 , num):
for i in range $(1, \mathrm{n}+1)$:
print(i, end=" ")
print("")

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

1

12
123
1234

3.C.PYRAMID PATTERN

AIM:

To write a python program to print Pyramid pattern.

ALGORITHM:

Step 1: Start the program
Step 2: create a variable num.
Step 3: The first outer loop is used to handle a number of rows and the inner loop is used to handle a number of columns.
Step 4: Print ("*", end=" ") is used to display numbers and the other print () is used for the next line after each row
Step5: Stop the program

PROGRAM

$$
\text { num }=5
$$

for n in range(0 , num):
for i in range $(0, \mathrm{n}+1)$:

```
        print(*, end=" ")
```

print()

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

4.A. OPERATIONS OF LIST

AIM:

To write a python program to implement the operations of a list.
ALOGIRTM
Step: Start the program
Step 2: Create a list named list.
Step 3: Display the items in the list
Step 4: Append a new element to the existing list
Step 5: Delete an element from the existing list.
Step 6: Create a new list and concatenate it with the existing list.
Step 7: Repeat an item to a specified number of times.
Step 8: Stop the program.

PROGRAM:

print('operations of list')
list=['python programming','java complete reference','C']
print('Books available in library:')
print(list)
print('append the item in list')
newbook=input("enter the name of book to be inserted")
newlist=list.append(newbook)
print(list)
newlist=['C++ programming','C Programming']
print('Concatenation of 2 lists')
print('Concatenated list: ',(list+newlist))
print('Repetition of an item in list')
print(3 *'python programming')
print("Removing an item from list")
list.remove('python programming')
print("Available books")
print(list)

RESULT:

Thus the python program was executed and verified successfully. OUTPUT:
operations of list
Books available in library:
['python programming', 'java complete reference', 'C']
append the item in list
enter the name of book to be inserted C++
['python programming', 'java complete reference', 'C', ' C++']
Concatenation of 2 lists
Concatenated list: ['python programming', 'java complete reference', 'C', ' C++', 'C++ programming',
'C Programming']
Repetition of an item in list
python programmingpython programmingpython programming
Removing an item from list
Available books
['java complete reference', 'C', ' C++']

4.B. OPERATIONS OF TUPLE

AIM:

To write a python program to implement the operations of a tuplel.
ALOGIRTM
Step1: Start the program.
Step 2: Create a tuple1 named tuple1.
Step 3: Display the items in the tuple1.
Step 4: Create a new tuple1 and concatenate it with the existing tuple1.
Step 5: Repeat an item to a specified number of times.
Step6: Search the materials for construction of civil structure.
Step7:Stop the program.

PROGRAM:

print('operations of tuple1')
tuple1=('bricks','cement','steel')
print('Displaying the items in tuple1')
print('Materials required for construction of building:')
print(tuple1)
newtuple1=('sand','wood')
print('Concatenation of 2 tuples')
print('Concatenated tuple1: ',(tuple1+newtuple1))
print('Repetition of an item in tuple1')
print(3*'steel')
print('Searching the materials for construction of building')
if ' C ' in tuple1:
print('present')
else:
print('not present')

RESULT:

Thus the python program was executed and verified successfully.

OUTPUT:

operations of tuple1
Displaying the items in tuple1
Materials required for construction of building:
('bricks', 'cement', 'steel')
Concatenation of 2 tuples
Concatenated tuple1: ('bricks', 'cement', 'steel', 'sand', 'wood')
Repetition of an item in tuple1
steelsteelsteel
Searching the materials for construction of building
not present

5.A. OPERATIONS OF SETS

AIM:

To write a python program to apply operations of set for programming language.

ALGORITHM:

Step 1: Start the program.
Step 2: Creating a Set with the use of a List and print the result.
Step 3: Addition of Languages to the Set using Update operation and print the result.
Step 4: Removing languages from Set using Remove operation and print the result.
Step5: Find the Language present or not in Set using membership operation and print the result.
Step6: Apply Union operation on Set using "|" operator and print the result.
Step7: Apply Intersection operation on set using "\&" operator and print the result.
Step 8: Stop the program.

PROGRAM

set1 = set(["python", "C", "C++","java"])
print(" $" n$ Programming languages ")
print(set1)
set1.update(["PHP","SQL","VISUAL BASIC"])
print("\nSet after Addition of Languages using Update: ")
print(set1)
set1.remove("C")
set1.remove("PHP")
print("\nSet after Removal of two Languages: ")
print(set1)
if " C " in set 1 :
print("present")
else:
print("not present")
set2=set(["Java script","R"])
set $3=$ set $1 \mid$ set 2
print("'InUnion using '|' operator")
print(set3)
set $4=\operatorname{set} 1 \&$ set 3
print("\nIntersection using '\&' operator")
print(set4)

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

Programming languages
\{'C', 'python', 'java', 'C++'\}
Set after Addition of Languages using Update:
\{'C', 'python', 'PHP', 'C++', 'java', 'SQL', 'VISUAL BASIC'\}
Set after Removal of two Languages:
\{'python', 'C++', 'java', 'SQL', 'VISUAL BASIC'\}
not present
Union using '|' operator
\{'python', 'R', 'java', 'SQL', 'Java script', 'VISUAL BASIC', 'C++'\}
Intersection using ' $\&$ ' operator
\{'python', 'C++', 'java', 'SQL', 'VISUAL BASIC'\}

5.B. OPERATIONS OF DICTIONARIES

AIM:

To write a python program to apply operations of dictionary for components of automobile.

ALGORITHM:

Step 1: Start the program.

Step 2 Creating a Dictionary for components of automobile with Integer Keys and print the result.

Step 3: Updating existing Key's Value and print the result.
Step 4: accessing a component using key and print the result.
Step5: Deleting a key using pop and print the result.
Step6: Find the components present or not in Dictionary using membership operator and print the result.

Step7: Apply Intersection operation on set using "\&" operator and print the result.

Step 8:Stop the program.

PROGRAM

Dict $=\{1:$ 'Engine', 2: 'Gearbox', 3: 'lights' $\}$
print(" $" n$ Components of automobile ")
$\operatorname{print}($ Dict $)$
Dict[4] = 'Battery'
print("\nUpdated Components: ")
print(Dict)
print("Accessing a Component using key:")
$\operatorname{print}(\operatorname{Dict}[1])$
pop_ele $=$ Dict.pop(2)
print('\n components after deletion: ' $+\operatorname{str}($ Dict $)$)
if "Break" in Dict.values():
print('Present')
else:
print('Not present')
RESULT:
Thus the Program was executed successfully and the output was verified.

OUTPUT:

Components of automobile
\{1: 'Engine', 2: 'Gearbox', 3: 'lights'\}
Updated Components:
\{1: 'Engine', 2: 'Gearbox', 3: 'lights', 4: 'Battery'\}
Accessing a Component using key:
Engine
components after deletion: \{1: 'Engine', 3: 'lights', 4: 'Battery'\}
Not present

6.A. FACTORIAL OF A NUMBER USING FUNCTION

AIM:

To write a Python program to print factorial of a number using function

ALGORITHM:

Step 1.Start the program
Step 2: Defining a recursive function
Step 3: Read the input from the user
Step 4 : if input number is negative then return an error message
Step 5: elif the input number is 0 then display 1 as output
Step6: else calculate the factorial by calling the user defined function
Step7: stop the program

PROGRAM:

def factorial(num):
if num $==1$:
return num
else: return num * factorial(num-1)
num $=\operatorname{int}($ input("Enter the number: "))
if num < 0 :
print("Invalid input")
elif num $==0$:
print ("Factorial of 0 is 1 ")
else:
print ("Factorial of \%d is \%d" \%(num, factorial(num)))

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

Enter the number: 5
Factorial of 5 is 120

6(B). FIND LARGEST NUMBER IN A LIST USING FUNCTION

AIM:

To write a Python program to find largest number in a list using function.

ALGORITHM:

Step 1.Start the program
Step 2:defining a mymax function
\# Assume first number in list is largest
\# initially and assign it to variable "max"
\#Now traverse through the list and compare each number with "max" value. Whichever is largest assign that value to "max'.

Step 3. Read the elements in the list
Step4. Print largest number by calling the user defined function
Step5:stop the program

PROGRAM:

def myMax(list1):
$\max =\operatorname{list1}[0]$
for x in list1:
if $\mathrm{x}>\max$:
$\max =\mathrm{x}$
return max
list1 $=[10,20,4,45,99]$
print("Largest element is:", myMax(list1))

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

Largest element is: 99

6(C). FIND AREA OF SHAPES(SQUARE) USING FUNCTION

AIM:

To write a Python program to find area of shapes(square) using function

ALGORITHM:

Step 1: Start the program
Step 2: Defining a Area of square function
Step 3: Read the side of square
Step4: Print area of square by calling the user defined function
Step5: Stop the program

Program:

def Areaofsquare(side):
Area $=$ side $*$ side
return Area
side $=\operatorname{int}($ input('enter a the value of side'))
print(Areaofsquare(side))

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

enter a the value of side8
64

7.A. REVERSE A STRING

AIM:

To write a Python program to reverse the strings

ALGORITHM:

Step 1: Start the program
Step 2: Defining a reversed_string function
Step 3: Read the string
Step4: Print the reversed string by calling the user defined function
Step5: Stop the program

Program:

def reversed_string(text):
if len(text) $==1$:
return text
return reversed_string(text[1:]) + text[:1]
print(reversed_string("Python Programming!"))

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

!gnimmargorP nohtyP

7.B. PALINDROME

AIM:

To write a Python program to reverse the strings

ALGORITHM:

Step 1: Start the program
Step 2: Defining a isPalindrome function
Step 3: Read the string
Step4: Check the string is palindrome or not by calling the user defined function. Condition is true print yes its palindrome.

Step5: otherwise print no its not palindrome
Step5: Stop the program

Program:

def isPalindrome(s):
return $\mathrm{s}=\mathrm{s}[\because:-1]$
$\mathrm{s}=\operatorname{input(}($ enter any string :")
ans $=$ isPalindrome(s)
if ans:
print(s,"Yes it's a palindrome")
else:
print(s,"No it's not a palindrome")

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

enter any string :malayalam

malayalam Yes it's a palindrome

7.C. CHARACTER COUNT

AIM:

To write a Python program to count the character in the strings

ALGORITHM:

Step 1: Start the program
Step 2: Defining a count_chars function
Step 3: Read the string
Step4: Print the no.of characters in a string by calling the user defined function
Step5: Stop the program

Program:

def count_chars(txt):
result $=0$
for char in txt:

$$
\text { result }+=1 \quad \text { \# same as result }=\text { result }+1
$$

return result
text=input("enter any string")
print("no.of characters in a string",count_chars(text))

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

enter any string welcome
no.of characters in a string 7

7.D. REPLACING CHARACTERS

AIM:

To write a Python program to replace the character in the strings

ALGORITHM:

Step 1: Start the program
Step 2: Read the string
Step3: Print the replaced string by using replace() method
Step4: Stop the program

Program:

string $=$ "python is a programming language is powerful"
print(string.replace("a", "A",1))
print(string.replace("a", "A"))

RESULT:

Thus the Program was executed successfully and the output was verified.

OUTPUT:

python is A programming language is powerful
python is A progrAmming 1AnguAge is powerful

8(A). PANDA LIBRARY MODULE

AIM:

To write a python program to implement the panda library module.

ALOGIRTM

Step1: Start the program
Step 2: import pandas as pd.
Step 3: creating a series as data.
Step 4: creating a series as datal
Step 5: print the series data and data1.
Step 6: Stop the program.

PROGRAM:

import pandas as pd
data $=\operatorname{pd} . \operatorname{Series}([5,2,3,7]$, index $=[$ 'a', 'b', 'c', 'd'])
data1 $=$ pd.Series([1, 6, 4, 9], index=['a', 'b', 'd', 'e'])
print(data, " $\backslash n \backslash n "$ ", data1)

RESULT:

Thus the python program was executed and verified successfully.

OUTPUT:

a 5
b 2
c 3
d 7
dtype: int64
a 1
b 6
d 4
e 9
dtype: int64

8(B). NUMPY LIBRARY MODULE

AIM:

To write a python program to implement the numpy library module.

ALOGIRTM

Step1: Start the program
Step 2: import numpy as np
Step 3: creating a simple array as data.
Step 4: print the simple array data.
Step 5: Stop the program.

PROGRAM:

import numpy as np
data $=\mathrm{np} . \operatorname{array}([1,3,4,7])$
print(data)

RESULT:

Thus the python program was executed and verified successfully.

OUTPUT:

[1347]

8(C).MATPLOTLIB LIBRARY MODULE

AIM:

To write a python program to implement the matplotlib library module.

ALOGIRTM

Step1: Start the program
Step 2: import pyplot as plt
Step 3: Read x -axis values
Step 3: Read Y-axis values
Step 3:.Define the function to plot
Step 4: Call the function to show the plot
Step 5: Stop the program.

PROGRAM:

from matplotlib import pyplot as plt
$\mathrm{x}=[5,2,9,4,7]$
$y=[10,5,8,4,2]$
plt.plot(x,y)
plt.show()

RESULT:

Thus the python program was executed and verified successfully.

OUTPUT:

8(D).SCIPY LIBRARY MODULE

AIM:

To write a python program to implement the scipy library module.

ALOGIRTM

Step1: Start the program
Step 2: import numpy as np

Step 3: importing linalg function from scipy
Step 4: Compute the determinant of a matrix
Step 5: Stop the program.

PROGRAM:

import numpy as np
$\mathrm{A}=\mathrm{np} . \operatorname{array}([[1,2,3],[4,2,6],[7,3,9]])$
from scipy import linalg
linalg. $\operatorname{det}(\mathrm{A})$

RESULT:

Thus the python program was executed and verified successfully.

OUTPUT:

6.0

9.A. COPY CONTENTS OF ONE FILE TO ANOTHER FILE

AIM:
To Copy contents of one file to another file

ALGORITHM:

STEP 1: Start
STEP 2: open both files
STEP 3: Add file name as argument
STEP 4: read content from first file
STEP 5: append content to secon
d file
STEP 6: Stop

PROGRAM:

with open('first.txt','r') as firstfile, open('second.txt','a') as secondfile:
for line in firstfile:
secondfile.write(line)

RESULT:

Thus the python program was executed and verified successfully.
FILE CREATION:

OUTPUT:

File Edit Format Run Options Window Help
hai hello welcome

9.B.WORD COUNT

AIM:

To find the word and lines in command line arguments.

ALGORITHM:

STEP 1: Start
STEP 2: Add arguments to find the words and lines
STEP 3: Add file name as argument
STEP 4: Parse the arguments to get the values
STEP 5: Format and print the words
STEP 6: Stop

PROGRAM:

```
    fname = input("Enter file name: ")
    num_words \(=0\)
    with open(fname, 'r') as f :
        for line in f :
            words \(=\) line.split()
            num_words \(+=\) len(words)
print("Number of words:")
print(num_words)
```


RESULT:

Thus the python program was executed and verified successfully.

FILE CREATION:

急 first.py - C:/Users/Thiru/AppData/Local/Programs/Python/Python37-32/first.py (3.7.3)
File Edit Format Run Options Window Help
hai hello welcome

OUTPUT:

Enter file name: first.py
Number of words:

9.C. LONGEST WORD

AIM:
To write a python program to find longest word from file

ALGORITHM:

STEP 1: Start
STEP 2: Open text file say 's1.py' in read mode using open function
STEP 3: Pass file name and access mode to open function
STEP 4: Read the whole content of text file using read function and store it in another variable say 'str'
STEP 5: Use split function on str object and store words in variable say 'words'
STEP 6: Find maximum word from words using len method
STEP 7: Iterate through word by word using for loop
STEP 8: Use if loop within for loop to check the maximum length of word
STEP 9: Store maximum length of word in variable say 'longest_word'
STEP 10: Display longst_word using print function
STEP 11: Stop

PROGRAM:

fin = open("first.py","r")
str $=$ fin.read()
words $=$ str.split()
max_len $=$ len(max(words, key=len $)$)
for word in words:
if len(word)==max_len:
longest_word =word
print(longest_word)

RESULT:

Thus the python program was executed and verified successfully.

FILE CREATION:

受 first.py - C:/Users/Thiru/AppData/Local/Programs/Python/Python37-32/first.py (3.7.3) - \quad -
File Edit Format Run Options Window Help
hai hello welcome

OUTPUT:

welcome

10.A. DIVIDE BY ZERO ERROR

AIM

To write a python program to implement exception handling using devide by zero error.

Algorithm

step 1: Start
Step 2: Enter the inputs a and b
Step 3: Calculate $(a+b) /(a-b)$ in try block
Step 4: if a equal to b try block throws an exception.
Step 5: The exception is caught and handled.
Step 6: stop

Program

a=int(input("Entre $a=$ "))
b=int(input("Entre b="))
try:
$\mathrm{c}=((\mathrm{a}+\mathrm{b}) /(\mathrm{a}-\mathrm{b}))$
\#Raising Error
if $\mathrm{a}==\mathrm{b}$:
raise ZeroDivisionError
\#Handling of error
except ZeroDivisionError:
print ("a/b result in 0 ")
else:
print (c)

RESULT:

Thus the python program was executed and verified successfully.

OUTPUT:

Enter $\mathrm{a}=4$
Enter b=4
a / b result in 0

10.B. VOTER'S AGE VALIDITY

AIM

To write a python program to implement exception handling using voter's age validity.

Algorithm

step 1: Start
Step 2: Enter the age
Step 3: Check whether the age is less than 18.
Step 4: If less than 18 throw an exception
Step 5: The exception is caught and handled.
Step 6: stop

Program:

a=int(input("Enter your age"))
try:

$$
\mathrm{c}=\mathrm{a}
$$

\#Raising Error
if $\mathrm{c}<18$:
raise ValueError
\#Handling of error
except ValueError:
print ("not eligible for voting - enter above 18")
else:
print (c)

RESULT:

Thus the python program was executed and verified successfully.

OUTPUT:

Enter your age 15
not eligible for voting - enter above 18
Enter your age20

10.C. STUDENT MARK RANGE VALIDATION

AIM

To write a python program to implement exception handling using Students mark range.

Algorithm

step 1: Start
Step 2: Enter the mark of student
Step 3: Check whether the mark is between 0 and 100
Step 4: if the range is not between 0 and 100 then throw an exception.
Step 5: The exception is caught and handled.
Step 6: stop

Program:

a=int(input("Enter any marks"))
try:

$$
\mathrm{c}=\mathrm{a}
$$

\#Raising Error
if $c>0$ and $c>100$:
raise ValueError
\#Handling of error
except ValueError:
print ("not correct students mark range value btween 1-100")
else:
print (c)
RESULT:

Thus the python program was executed and verified successfully.

OUTPUT:

Enter any marks102
not correct students mark range value btween 1-100
Enter any marks90

90

11. EXPLORING PYGAME TOOL.

Pygame

- Pygame is a cross-platform set of Python modules which is used to create video games.
- It consists of computer graphics and sound libraries designed to be used with the Python programming language.
- Pygame was officially written by Pete Shinners to replace PySDL.
- Pygame is suitable to create client-side applications that can be potentially wrapped in a standalone executable.

Pygame Installation
 Install pygame in Windows

Before installing Pygame, Python should be installed in the system, and it is good to have 3.6.1 or above version because it is much friendlier to beginners, and additionally runs faster. There are mainly two ways to install Pygame, which are given below:

1. Installing through pip: The good way to install Pygame is with the pip tool (which is what python uses to install packages). The command is the following:
py -m pip install -U pygame --user
2. Installing through an IDE: The second way is to install it through an IDE and here we are using Pycharm IDE. Installation of pygame in the pycharm is straightforward. We can install it by running the above command in the terminal or use the following steps:

- Open the File tab and click on the Settings option.
- import pygame

Simple pygame Example
import pygame
pygame.init()
screen $=$ pygame.display.set_mode((400,500))
done $=$ False
while not done:
for event in pygame.event.get():
if event.type $==$ pygame.QUIT:
done $=$ True
pygame.display.flip()

12.A. SIMULATE BOUNCING BALL USING PYGAME

AIM:

To write a python program to simulate bouncing ball using pygame.

PROGRAM/SOURCE CODE :

import sys, pygame
pygame.init()
size $=$ width, height $=800,600$
speed $=[1,1]$
background $=255,255,255$
screen $=$ pygame.display.set_mode(size)
pygame.display.set_caption("Bouncing ball")
ball = pygame.image.load("ball.png")
ballrect $=$ ball.get_rect()
while 1:
for event in pygame.event.get():
if event.type $==$ pygame.QUIT:
sys.exit()
ballrect $=$ ballrect.move(speed)
if ballrect.left < 0 or ballrect.right > width:
$\operatorname{speed}[0]=-\operatorname{speed}[0]$
if ballrect.top < 0 or ballrect.bottom > height:
speed[1] $=-$ speed[1]
screen.fill(background)
screen.blit(ball, ballrect)
pygame.display.flip()

OUTPUT

RESULT:

Thus the program to simulate bouncing ball using pygameis executed and the output is obtained.

12.B. SIMULATE CAR RACE USING PYGAME

AIM:

To write a python program to simulate car race using pygame.

PROGRAM/SOURCE CODE :

import random
from time import sleep
import pygame
class CarRacing:
def \qquad init \qquad (self):
pygame.init()
self.display_width $=800$
self.display_height $=600$
self.black $=(0,0,0)$
self. white $=(255,255,255)$
self.clock $=$ pygame.time.Clock()
self.gameDisplay $=$ None
self.initialize()
def initialize(self):
self.crashed $=$ False
self.carImg = pygame.image.load('.. limg \backslash lcar.png')
self.car_x_coordinate $=($ self.display_width $* 0.45)$
self.car_y_coordinate $=($ self.display_height * 0.8)
self.car_width $=49$
\# enemy_car
self.enemy_car = pygame.image.load('.. limg \backslash lenemy_car_1.png')
self.enemy_car_startx $=$ random.randrange $(310,450)$
self.enemy_car_starty $=-600$
self.enemy_car_speed = 5

```
    self.enemy_car_width = 49
    self.enemy_car_height = 100
    # Background
    self.bgImg = pygame.image.load(".\\img\\back_ground.jpg")
    self.bg_x1 = (self.display_width / 2) - (360 / 2)
    self.bg_x2 = (self.display_width / 2) - (360 / 2)
    self.bg_yl = 0
    self.bg_y2 = -600
    self.bg_speed = 3
    self.count = 0
```

def car(self, car_x_coordinate, car_y_coordinate):
self.gameDisplay.blit(self.carImg, (car_x_coordinate, car_y_coordinate))
def racing_window(self):
self.gameDisplay = pygame.display.set_mode((self.display_width, self.display_height))
pygame.display.set_caption('Car Dodge')
self.run_car()
def run_car(self):
while not self.crashed: for event in pygame.event.get():
if event.type == pygame.QUIT:
self.crashed $=$ True
\# print(event)
if (event.type == pygame.KEYDOWN):
if (event.key == pygame.K_LEFT):
self.car_x_coordinate -= 50
print ("CAR X COORDINATES: \%s" \% self.car_x_coordinate)
if (event.key == pygame.K_RIGHT):
self.car_x_coordinate += 50
print ("CAR X COORDINATES: \%s" \% self.car_x_coordinate)
print ("x: $\{\mathrm{x}\}, \mathrm{y}:\{\mathrm{y}\}$ ".format(x=self.car_x_coordinate, $\mathrm{y}=$ self.car_y_coordinate))
self.gameDisplay.fill(self.black)
self.back_ground_raod()
self.run_enemy_car(self.enemy_car_startx, self.enemy_car_starty)
self.enemy_car_starty += self.enemy_car_speed
if self.enemy_car_starty > self.display_height:
self.enemy_car_starty $=0$ - self.enemy_car_height
self.enemy_car_startx $=$ random.randrange $(310,450)$
self.car(self.car_x_coordinate, self.car_y_coordinate)
self.highscore(self.count)
self.count += 1
if (self.count $\% 100==0$):
self.enemy_car_speed += 1
self.bg_speed += 1
if self.car_y_coordinate < self.enemy_car_starty + self.enemy_car_height:
if self.car_x_coordinate > self.enemy_car_startx and self.car_x_coordinate < self.enemy_car_startx + self.enemy_car_width or self.car_x_coordinate + self.car_width > self.enemy_car_startx and self.car_x_coordinate + self.car_width < self.enemy_car_startx + self.enemy_car_width:

> self.crashed = True
self.display_message("Game Over !!!")
if self.car_x_coordinate < 310 or self.car_x_coordinate > 460:
self.crashed $=$ True
self.display_message("Game Over !!!")
pygame.display.update()
self.clock.tick(60)
def display_message(self, msg):
font $=$ pygame.font.SysFont("comicsansms", 72, True)
text $=$ font.render $(\mathrm{msg}$, True, $(255,255,255))$
self.gameDisplay.blit(text, (400 - text.get_width() // 2, 240 - text.get_height() // 2))
self.display_credit()
pygame.display.update()
self.clock.tick(60)
sleep(1)
car_racing.initialize()
car_racing.racing_window()
def back_ground_raod(self):
self.gameDisplay.blit(self.bgImg, (self.bg_x1, self.bg_y1))
self.gameDisplay.blit(self.bgImg, (self.bg_x2, self.bg_y2))
self.bg_y1 += self.bg_speed
self.bg_y2 += self.bg_speed
if self.bg_y1 >= self.display_height:
self.bg_y1 $=-600$
if self.bg_y2 >= self.display_height:
self.bg_y2 $=-600$
def run_enemy_car(self, thingx, thingy):
self.gameDisplay.blit(self.enemy_car, (thingx, thingy)) def highscore(self, count):
font $=$ pygame.font.SysFont("arial", 20)
text $=$ font.render("Score : " $+\operatorname{str}($ count $)$, True, self.white $)$
self.gameDisplay.blit(text, (0, 0))
def display_credit(self):
font $=$ pygame.font.SysFont("lucidaconsole", 14)
text $=$ font.render("Thanks for playing!", True, self.white)
self.gameDisplay.blit(text, (600, 520))
if \qquad name__ == ' \qquad main ':
car_racing $=$ CarRacing()
car_racing.racing_window()

OUTPUT

RESULT:

Thus the python program was executed and verified successfully.

