

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

LAB MANUAL

Subject Code: CS3481

Subject Name: Database Management Systems Lab

Program Name: B. E., CSE

Year & Sem: II & IV

Regulation: 2021

SHANMUGANATHAN ENGINEERING COLLEGE
ARASAMPATTI – 622 507

Accredited by NAAC, Approved by AICTE,
An ISO 9001:2015 Certified Institution

CS3481 DATABASE MANAGEMENT SYSTEMS LABORATORY L T P C

 0 0 3 1.5

COURSE OBJECTIVES:

 To learn and implement important commands in SQL.

 To learn the usage of nested and joint queries.

 To understand functions, procedures and procedural extensions of databases.

 To understand design and implementation of typical database applications.

 To be familiar with the use of a front end tool for GUI based application development.

LIST OF EXPERIMENTS:

1. Create a database table, add constraints (primary key, unique, check, Not null), insert rows,

Update and delete rows using SQL DDL and DML commands.

2. Create a set of tables, add foreign key constraints and incorporate referential integrity.

3. Query the database tables using different ‘where’ clause conditions and also implement

Aggregate functions.

4. Query the database tables and explore sub queries and simple join operations.

5. Query the database tables and explore natural, equi and outer joins.

6. Write user defined functions and stored procedures in SQL.

7. Execute complex transactions and realize DCL and TCL commands.

8. Write SQL Triggers for insert, delete, and update operations in a database table.

9. Create View and index for database tables with a large number of records.

10. Create an XML database and validate it using XML schema.

11. Create Document, column and graph based data using NOSQL database tools.

12. Develop a simple GUI based database application and incorporate all the above mentioned

Features

13. Case Study using any of the real life database applications from the following list

a) Inventory Management for a EMart Grocery Shop

b) Society Financial Management

c) Cop Friendly App – Eseva

d) Property Management – eMall

e) Star Small and Medium Banking and Finance

● Build Entity Model diagram. The diagram should align with the business and functional

Goals stated in the application.

Apply Normalization rules in designing the tables in scope.

● Prepared applicable views, triggers (for auditing purposes), functions for enabling

Enterprise grade features.

● Build PL SQL / Stored Procedures for Complex Functionalities,

Ex EOD Batch Processing for calculating the EMI for Gold Loan for each eligible Customer.

● Ability to showcase ACID Properties with sample queries with appropriate settings

List of Equipments :(30 Students per Batch)

MYSQL / SQL: 30 Users

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Create databases with different types of key constraints.

CO2: Construct simple and complex SQL queries using DML and DCL commands.

CO3: Use advanced features such as stored procedures and triggers and incorporate in GUI

based application development.

CO4: Create an XML database and validate with meta-data (XML schema).

CO5: Create and manipulate data using NOSQL database.

Ex No: 1
Create a database table, add constraints (primary key, unique, check, Not null),

Insert rows, Update and delete rows using SQL DDL and DML commands.

Aim:

 To create table and Execute Data Definition Commands, Data Manipulation Commands

for Inserting, Deleting, Updating and Retrieving Tables with constraints.

SQL: create command

 Create is a DDL SQL command used to create a table or a database in relational database

management system.

Creating a Database

 To create a database in RDBMS, create command is used. Following is the syntax,

CREATE DATABASE <DB_NAME>;

Example for creating Database

CREATE DATABASE Test;

The above command will create a database named Test, which will be an empty schema

without any table.

To create tables in this newly created database, we can again use the create command.

Creating a Table

 Create command can also be used to create tables. Now when we create a table, we have

to specify the details of the columns of the tables too. We can specify the names and data types

of various columns in the create command itself.

Following is the syntax,

CREATE TABLE <TABLE_NAME>

(

column_name1 datatype1,

column_name2 datatype2,

column_name3 datatype3,

column_name4 datatype4

);

Create table command will tell the database system to create a new table with the given table

name and column information.

Most commonly used data types for Table columns

Here we have listed some of the most commonly used data types used for columns in tables.

Datatype Use

INT Used for columns which will store integer values.

FLOAT Used for columns which will store float values.

DOUBLE Used for columns which will store float values.

VARCHAR Used for columns which will be used to store characters and integers, basically a string.

CHAR Used for columns which will store char values (single character).

DATE Used for columns which will store date values.

TEXT

Used for columns which will store text which is generally long in length. For example, if

you create a table for storing profile information of a social networking website, then for

about me section you can have a column of type TEXT.

Structured Query Language (SQL) as we all know is the database language by the use of

which we can perform certain operations on the existing database and also we can use this

language to create a database. SQL uses certain commands like Create, Drop, Insert, etc. to

carry out the required tasks.

These SQL commands are mainly categorized into five categories as:

1. DDL – Data Definition Language

2. DQL – Data Query Language

3. DML – Data Manipulation Language

4. DCL – Data Control Language

5. TCL – Transaction Control Language

DDL (Data Definition Language):

 DDL or Data Definition Language actually consists of the SQL commands that can be

used to define the database schema.

 It simply deals with descriptions of the database schema and is used to create and modify the

structure of database objects in the database.

DDL is a set of SQL commands used to create, modify, and delete database structures but not

data.

These commands are normally not used by a general user, who should be accessing the

database via an application.

List of DDL commands:

 CREATE: This command is used to create the database or its objects (like table, index,

function, views, store procedure, and triggers).

 DROP: This command is used to delete objects from the database.

 ALTER: This is used to alter the structure of the database.

 TRUNCATE: This is used to remove all records from a table, including all spaces

allocated for the records are removed.

 COMMENT: This is used to add comments to the data dictionary.

 RENAME: This is used to rename an object existing in the database.

DQL (Data Query Language):

 DQL statements are used for performing queries on the data within schema objects. The

purpose of the DQL Command is to get some schema relation based on the query passed to it.

It includes the SELECT statement. This command allows getting the data out of the database to

perform operations with it.

List of DQL:

 SELECT: It is used to retrieve data from the database.

DML (Data Manipulation Language):

 The SQL commands that deals with the manipulation of data present in the database

belong to DML or Data Manipulation Language and this includes most of the SQL

statements. It is the component of the SQL statement that controls access to data and to the

database. Basically, DCL statements are grouped with DML statements.

List of DML commands:

 INSERT : It is used to insert data into a table.

 UPDATE: It is used to update existing data within a table.

 DELETE : It is used to delete records from a database table.

 LOCK: Table control concurrency.

 CALL: Call a PL/SQL or JAVA subprogram.

 EXPLAIN PLAN: It describes the access path to data.

DCL (Data Control Language):

 DCL includes commands such as GRANT and REVOKE which mainly deal with the

rights, permissions, and other controls of the database system.

List of DCL commands:

 GRANT: This command gives users access privileges to the database.

 REVOKE: This command withdraws the user’s access privileges given by using the

GRANT command.

TCL (Transaction Control Language):

 Transactions group a set of tasks into a single execution unit. Each transaction begins

with a specific task and ends when all the tasks in the group successfully complete. If any of

the tasks fail, the transaction fails. Therefore, a transaction has only two results: success or

failure. You can explore more about transactions here. Hence, the following TCL commands

are used to control the execution of a transaction:

 COMMIT: Commits a Transaction.

 ROLLBACK: Rollbacks a transaction in case of any error occurs.

 SAVEPOINT: Sets a save point within a transaction.

 SET TRANSACTION: Specifies characteristics for the transaction.

DDL (Data Definition Language):

Examples of CREATE Command in SQL

Example 1: This example describes how to create a new database using the CREATE

DDL command.

Syntax to Create a Database:

CREATE Database Database_Name;

Suppose, you want to create a Books database in the SQL database. To do this, you have to

write the following DDL Command:

Create Database Books;

Example 2: This example describes how to create a new table using the CREATE DDL

command.

Syntax to create a new table:

Suppose, you want to create a Student table with five columns in the SQL database. To do

this, you have to write the following DDL command:

CREATE TABLE Student

(Roll_No. Int , First_Name Varchar (20) , Last_Name Varchar (20) , Age Int , Marks Int

) ;

Examples of DROP Command in SQL

Example 1: This example describes how to remove the existing table from the SQL

database.

Syntax to remove a table:

DROP TABLE Table_Name;

Suppose, you want to delete the Student table from the SQL database. To do this, you have to

write the following DDL command:

DROP TABLE Student;

Examples of ALTER Command in SQL

Example 1: This example shows how to add a new field to the existing table.

Syntax to add a Newfield in the table:

ALTER TABLE name_of_table ADD column_name column_definition;

Suppose, you want to add the 'Father's_Name' column in the existing Student table. To do this,

you have to write the following DDL command:

ALTER TABLE Student ADD Father's_Name Varchar(60);

Example 2: This example describes how to remove the existing column from the table.

Syntax to remove a column from the table:

ALTER TABLE name_of_table DROP Column_Name_1 , column_Name_2 , ….., co

lumn_Name_N;

Suppose, you want to remove the Age and Marks column from the existing Student table. To

do this, you have to write the following DDL command:

ALTER TABLE StudentDROP Age, Marks;

Example 3: This example describes how to modify the existing column of the existing

table.

Syntax to modify the column of the table:

ALTER TABLE table_name MODIFY (column_name column_datatype(size));

Suppose, you want to change the character size of the Last_Namefield of the Student table. To

do this, you have to write the following DDL command:

ALTER TABLE table_name MODIFY (Last_Name varchar(25));

Syntax of TRUNCATE command

1. TRUNCATE TABLE Table_Name;

Example

Suppose, you want to delete the record of the Student table. To do this, you have to write the

following TRUNCATE DDL command:

1. TRUNCATE TABLE Student;

The above query successfully removed all the records from the student table. Let's verify it by

using the following SELECT statement:

1. SELECT * FROM Student;

Syntax of RENAME command

1. RENAME TABLE Old_Table_Name TO New_Table_Name;

Example

1. RENAME TABLE Student TO Student_Details ;

This query changes the name of the table from Student to Student_Details.

DML(Data Manipulation Language):

Syntax of INSERT Command

INSERT INTO TABLE_NAME (column_Name1 , column_Name2 , column_Nam

e3 , column_NameN) VALUES (value_1, value_2, value_3, value_N) ;

Examples of INSERT Command

Example 1: This example describes how to insert the record in the database table.

Let's take the following student table, which consists of only 2 records of the student.

Stu_Id Stu_Name Stu_Marks Stu_Age

101 Ramesh 92 20

201 Jatin 83 19

Suppose, you want to insert a new record into the student table. For this, you have to

write the following DML INSERT command:

INSERT INTO Student (Stu_id, Stu_Name, Stu_Marks, Stu_Age) VALUES (104,

Anmol, 89, 19);

Syntax of SELECT DML command

SELECT column_Name_1, column_Name_2, ….., column_Name_N FROM Name_o

f_table;

Here, column_Name_1, column_Name_2, ….., column_Name_N are the names of those

columns whose data we want to retrieve from the table.

If we want to retrieve the data from all the columns of the table, we have to use the following

SELECT command:

SELECT * FROM table_name;

Examples of SELECT Command

Example 1: This example shows all the values of every column from the table.

SELECT * FROM Student;

This SQL statement displays the following values of the student table:

Student ID Student Name Student Marks

BCA1001 Ahoy 85

BCA1002 Annul 75

BCA1003 Bheem 60

BCA1004 Ram 79

BCA1005 Sumit 80

Example 2: This example shows all the values of a specific column from the table.

SELECT Emp_Id, Emp_Salary FROM Employee;

This SELECT statement displays all the values of Emp_Salary and Emp_Id column

of Employee table:

Emp_Id Emp_Salary

201 25000

202 45000

203 30000

204 29000

205 40000

Example 3: This example describes how to use the WHERE clause with the SELECT

DML command.

Let's take the following Student table:

Student_ID Student_Name Student_Marks

BCA1001 Abhay 80

BCA1002 Ankit 75

BCA1003 Bheem 80

BCA1004 Ram 79

BCA1005 Sumit 80

If you want to access all the records of those students whose marks is 80 from the above table,

then you have to write the following DML command in SQL:

1. SELECT * FROM Student WHERE Stu_Marks = 80;

The above SQL query shows the following table in result:

Student_ID Student_Name Student_Marks

BCA1001 Abhay 80

BCA1003 Bheem 80

BCA1005 Sumit 80

Syntax of UPDATE Command

UPDATE Table_name SET [column_name1= value_1, ….., column_nameN = value_N] WH

ERE CONDITION;

Here, 'UPDATE', 'SET', and 'WHERE' the SQL keywords, and ‘Table name’ are is the name of

the table whose values you want to update.

Examples of the UPDATE command

Example 1: This example describes how to update the value of a single field.

Let's take a Product table consisting of the following records:

Product_Id Product_Name Product_Price Product_Quantity

P101 Chips 20 20

P102 Chocolates 60 40

P103 Maggi 75 5

P201 Biscuits 80 20

P203 Namkeen 40 50

Suppose, you want to update the Product_Price of the product whose Product_Id is P102. To

do this, you have to write the following DML UPDATE command:

UPDATE Product SET Product_Price = 80 WHERE Product_Id = 'P102' ;

Example 2: This example describes how to update the value of multiple fields of the

database table.

UPDATE Student SET Stu_Marks = 80, Stu_Age = 21 WHERE Stu_Id = 103 AND S

tu_Id = 202;

Syntax of DELETE Command

DELETE FROM Table_Name WHERE condition;

Examples of DELETE Command

Example 1: This example describes how to delete a single record from the table.

Let's take a Product table consisting of the following records:

Product_Id Product_Name Product_Price Product_Quantity

P101 Chips 20 20

P102 Chocolates 60 40

P103 Maggi 75 5

P201 Biscuits 80 20

P203 Namkeen 40 50

Suppose, you want to delete that product from the Product table whose Product_Id is P203. To

do this, you have to write the following DML DELETE command:

1. DELETE FROM Product WHERE Product_Id = 'P202' ;

Example 2: This example describes how to delete the multiple records or rows from the

database table.

DELETE FROM Student WHERE Stu_Marks > 70 ;

SQL CASE

 The CASE is a statement that operates if-then-else type of logical queries. This statement

returns the value when the specified condition evaluates to True. When no condition evaluates

to True, it returns the value of the ELSE part.

In Structured Query Language, CASE statement is used in SELECT, INSERT, and DELETE

statements with the following three clauses:

1. WHERE Clause

2. ORDER BY Clause

3. GROUP BY Clause

This statement in SQL is always followed by at least one pair of WHEN and THEN statements

and always finished with the END keyword.

The CASE statement is of two types in relational databases:

1. Simple CASE statement

2. Searched CASE statement

Syntax of CASE statement in SQL

CASE <expression>

WHEN condition_1 THEN statement_1

WHEN condition_2 THEN statement_2 …….

WHEN condition_N THEN statement_N

ELSE result

END;

 Here, the CASE statement evaluates each condition one by one.

 If the expression matches the condition of the first WHEN clause, it skips all the further

WHEN and THEN conditions and returns the statement_1 in the result.

 If the expression does not match the first WHEN condition, it compares with the seconds

WHEN condition. This process of matching will continue until the expression is

matched with any WHEN condition.

 If no condition is matched with the expression, the control automatically goes to the

ELSE part and returns its result. In the CASE syntax, the ELSE part is optional.

 In Syntax, CASE and END are the most important keywords which show the beginning

and closing of the CASE statement.

Examples of CASE statement in SQL

Let's take the Student_Details table, which contains roll_no, name, marks, subject, and city of

students.

Roll_No Stu_Name Stu_Subject Stu_Marks Stu_City

2001 Akshay Science 92 Noida

2002 Ram Math 49 Jaipur

2004 Shyam English 52 Gurgaon

2005 Yatin Hindi 45 Lucknow

2006 Manoj Computer 70 Ghaziabad

2007 Sheetal Math 82 Noida

2008 Parul Science 62 Gurgaon

Example 1: The following SQL statement uses single WHEN and THEN condition to the

CASE statement:

SELECT Roll_No, Stu_Name, Stu_Subject, Stu_marks,

CASE

WHEN Stu_Marks >= 50 THEN 'Student_Passed'

ELSE 'Student_Failed'

END AS Student_Result

FROM Student_Details;

Explanation of above query:

Here, the CASE statement checks that if the Stu_Marks is greater than and equals 50, it

returns Student_Passed otherwise moves to the ELSE part and returns Student_Failed in

the Student_Result column.

Output:

Roll_No Stu_Name Stu_Subject Stu_Marks Student_Result

2001 Akshay Science 92 Student_Passed

2002 Ram Math 49 Student_Failed

2004 Shyam English 52 Student_Passed

2005 Yatin Hindi 45 Student_Failed

2006 Manoj Computer 70 Student_Passed

2007 Sheetal Math 82 Student_Passed

2008 Parul Science 62 Student_Passed

Example 2: The following SQL statement adds more than one WHEN and THEN condition to

the CASE statement:

SELECT Roll_No, Stu_Name, Stu_Subject, Stu_marks,

CASE

WHEN Stu_Marks >= 90 THEN 'Outstanding'

WHEN Stu_Marks >= 80 AND Stu_Marks < 90 THEN 'Excellent'

WHEN Stu_Marks >= 70 AND Stu_Marks < 80 THEN 'Good'

WHEN Stu_Marks >= 60 AND Stu_Marks < 70 THEN 'Average'

WHEN Stu_Marks >= 50 AND Stu_Marks < 60 THEN 'Bad'

WHEN Stu_Marks < 50 THEN 'Failed'

END AS Stu_Remarks

FROM Student_Details;

Example 3:

Let's take another Employee_Details table which contains Emp_ID, Emp_Name, Emp_Dept,

and Emp_Salary.

Emp_Id Emp_Name Emp_Dept Emp_Salary

1 Akshay Finance 9000

2 Ram Marketing 4000

3 Shyam Sales 5000

4 Yatin Coding 4000

5 Manoj Marketing 5000

1 Akshay Finance 8000

2 Ram Coding 6000

3 Shyam Coding 4000

4 Yatin Marketing 8000

5 Manoj Finance 3000

The following SQL query uses GROUP BY clause with CASE statement:

SELECT Emp_Id, Emp_Name, Emp_Dept, sum(Emp_Salary) as Total_Salary,

CASE

WHEN SUM(Emp_Salary) >= 10000 THEN 'Increment'

ELSE 'Constant'

END AS Emp_Remarks

FROM Employee_Details

GROUP BY Emp_id, Emp_Name;

Output:

Emp_Id Emp_Name Emp_Dept Total_Salary Emp_Remarks

1 Akshay Finance 17000 Increment

2 Ram Marketing 9000 Decrement

3 Shyam Sales 10000 Increment

4 Yatin Coding 12000 Increment

5 Manoj Marketing 8000 Decrement

Example 4: In this example, we use the ORDER BY clause with a CASE statement in

SQL:

Let's take another Employee_Details table which contains Emp_ID, Emp_Name, Emp_Dept,

and Emp_Age.

We can check the data of Employee_Details by using the following query in SQL:

Select * From Employee_Details;

 Output:

Emp_Id Emp_Name Emp_Dept Emp_Age

1 Akshay Finance 23

2 Ram Marketing 24

3 Balram Sales 25

4 Yatin Coding 22

5 Manoj Marketing 23

6 Sheetal Finance 24

7 Parul Finance 22

8 Yogesh Coding 25

9 Naveen Marketing 22

10 Tarun Finance 23

The following SQL query shows all the details of employees in the ascending order of

employee names:

SELECT * FROM Employee_Details

ORDER BY Emp_Name;

Output:

Emp_Id Emp_Name Emp_Dept Emp_Age

1 Akshay Finance 23

3 Balram Sales 25

5 Manoj Marketing 23

9 Naveen Marketing 22

7 Parul Finance 22

2 Ram Marketing 24

6 Sheetal Finance 24

10 Tarun Finance 23

4 Yatin Coding 22

8 Yogesh Coding 25

If you want to show those employees at the top who work in the Coding Department, then for

this operation, you have to use single WHEN and THEN statement in the CASE statement as

shown in the following query:

SELECT * FROM Employee_Details

 ORDER BY CASE WHEN Emp_Dept = 'Coding' THEN 0

ELSE 1 END, Emp_Name;

 Output:

Emp_Id Emp_Name Emp_Dept Emp_Age

4 Yatin Coding 22

8 Yogesh Coding 25

1 Akshay Finance 23

3 Balram Sales 25

5 Manoj Marketing 23

9 Naveen Marketing 22

7 Parul Finance 22

2 Ram Marketing 24

6 Sheetal Finance 24

10 Tarun Finance 23

Ex No: 2 Create a set of tables, add foreign key constraints and incorporate referential integrity

Aim:

To create a set of tables, add foreign key constraints and incorporate referential integrity

Key Constraints in DBMS:

 Constraints or nothing but the rules that are to be followed while entering data into

columns of the database table

 Constraints ensure that data entered by the user into columns must be within the criteria

specified by the condition

 For example, if you want to maintain only unique IDs in the employee table or if you

want to enter only age under 18 in the student table etc

 We have 5 types of key constraints in DBMS

o NOT NULL: ensures that the specified column doesn’t contain a NULL

value.

o UNIQUE: provides a unique/distinct values to specified columns.

o DEFAULT: provides a default value to a column if none is specified.

o CHECK: checks for the predefined conditions before inserting the data

inside the table.

o PRIMARY KEY: it uniquely identifies a row in a table.

o FOREIGN KEY: ensures referential integrity of the relationship

Not Null

 Null represents a record where data may be missing data or data for that record may be

optional

 Once not null is applied to a particular column, you cannot enter null values to that

column and restricted to maintain only some proper value other than null

 A not-null constraint cannot be applied at table level

Example

CREATE TABLE Orders (

 OrderID int NOT NULL,

 OrderNumber int NOT NULL,

 PersonID int,

 PRIMARY KEY (OrderID),

 FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)

);

 In the above example, we have applied not null on three columns ID, name and age

which means whenever a record is entered using insert statement all three columns

should contain a value other than null

 We have two other columns address and salary, where not null is not applied which

means that you can leave the row as empty or use null value while inserting the record

into the table

Unique

 Sometimes we need to maintain only unique data in the column of a database table,

this is possible by using a unique constraint

 Unique constraint ensures that all values in a column are unique

Example

CREATE TABLE Persons (

 ID int UNIQUE,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

);

In the above example, as we have used unique constraint on ID column we are not

supposed to enter the data that is already present, simply no two ID values are same

DEFAULT

 Default clause in SQL is used to add default data to the columns

 When a column is specified as default with some value then all the rows will use

the same value i.e each and every time while entering the data we need not enter that

value

 But default column value can be customized i.e it can be overridden when inserting a

data for that row based on the requirement.

Example for DEFAULT clause

The following SQL sets a DEFAULT value for the “city” column when the “emp” table is

created:

My SQL / SQL Server / Oracle / MS Access:

CREATE TABLE emp (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 City varchar(255) DEFAULT 'hyderabad'

);

 As a result, whenever you insert a new row each time you need not enter a value for this

default column that is entering a column value for a default column is optional and if

you don’t enter the same value is considered that is used in the default clause

Check

Suppose in real-time if you want to give access to an application only if the age entered by the

user is greater than 18 this is done at the back-end by using a check constraint

Check constraint ensures that the data entered by the user for that column is within the range of

values or possible values specified.

Example for check constraint

CREATE TABLE STUDENT (

 ID int ,

 Name varchar(255) ,

 Age int,

 CHECK (Age>=18)

);

 As we have used a check constraint as (Age>=18) which means values entered by the

user for this age column while inserting the data must be less than or equal to

18 otherwise an error is shown

 Simply, the only possible values that the age column will accept is [0 -17]

Primary Key

 A primary key is a constraint in a table that uniquely identifies each row record in a

database table by enabling one or more the columns in the table as the primary key.

Creating a primary key

A particular column is made as a primary key column by using the primary key keyword

followed with the column name

CREATE TABLE EMP (

 ID INT

 NAME VARCHAR (20)

 AGE INT

 COURSE VARCHAR(10)

 PRIMARY KEY (ID)

);

 Here we have used the primary key on ID column then ID column must contain unique

values i.e one ID cannot be used for another student.

 If you try to enter duplicate value while inserting in the row you are displayed with an

error

 Hence primary key will restrict you to maintain unique values and not null values in

that particular column

Foreign Key

 The foreign key a constraint is a column or list of columns that points to the primary key

column of another table

 The main purpose of the foreign key is only those values are allowed in the present table

that will match the primary key column of another table.

 (Sometimes you need to maintain and restrict only same data in a table that is exactly the

same column data of another table, this purpose is served by using a foreign key.)

Example to create a foreign key

Reference Table

CREATE TABLE CUSTOMERS1(

 ID INT ,

 DEPT VARCHAR (20)

 PRIMARY KEY (ID)

);

Child Table

CREATE TABLE CUSTOMERS2(

 ID INT ,

 ADDRES VARCHAR (20)

 REFERENCES CUSTOMERS1(ID)

);

CUSTOMERS1 table:

ID DEPT

65 Dairy

66 Snacks

67 Snacks

CUSTOMERS2 table:

ID ADDRESS

65 Hyderabad

66 Chennai

67 Hyderabad

 ID column in the customers1 table is used as a foreign key in the customers2 table

which means all the ID values in customers2 must exist in the customers1 table

 An ID value that is not present in customers1 table is not allowed to be entered in the

customers2 table ID column

 ID column of the customers1 table contains values as 65 66 67 now ID column in

customers2 table must contain only these values that is 65 66 67 ,if the user enters

other than this values in the ID column of the customers2 table it will raise an error

because customers1 table id column is a foreign key in the customers2 table

 Hence we can observe that a link is maintained between two tables that is if you want to

enter any data in the foreign key column table then we must add the data in the

primary key column of the parent table if it is not present

Note:

 The column or list of the column that is used as foreign key in the present table must

be a primary key in another table

 The structure and data type of a PRIMARY KEY column of one table which used as a

FOREIGN KEY in another table must be the same

 The table containing the foreign key is called the child table, and the table containing

the candidate key is called the referenced or parent tabl

Why foreign key?

 A foreign key is used to prevent activities that would destroy the link between tables

 A foreign key prevents invalid data being inserted into the foreign key column because

it restricts the user to enter only those values that are present in the primary key of

another table.

Ex No: 3
Query the database tables using different ‘where’ clause conditions and also

implement Aggregate functions

Aim:

 To Query the database tables using different ‘where’ clause conditions and also

implement Aggregate functions.

Aggregate functions in DBMS

 SQL provides a number of built-in functions to perform operations on data these

functions are very much useful for performing mathematical calculations on table data

 Aggregate functions return a single value after performing calculations on a set of

values, here will discuss the five frequently used aggregate functions provided by SQL

 These aggregate functions are used with the SELECT statement at a time only one

column can be applied with the function

General syntax

SELECT functionname(column_name)

FROM table_name

consider sample table emp

avg()

 This function returns the Arithmetic mean of all the values present in that

column

eid name age salary

65 Trish 22 9000

66 Rishi 29 8000

67 Mahi 34 6000

68 Mani 44 10000

69 Puppy 35 8000

SQL query to find average salary

SELECT avg(salary) from Emp;

avg(salary)

8200

count()

 It returns the number of rows present in the table which can be either based

upon a condition or without a condition

SQL query to count employees, satisfying specified condition is,

SELECT COUNT(name) FROM Emp WHERE salary = 8000;

O/P

count(name)

2

Example of COUNT (distinct)

Consider the following Emp table

eid name age salary

65 Trish 22 9000

66 Rishi 29 8000

67 Mahi 34 6000

68 Mani 44 10000

69 Puppy 35 8000

SQL query is,

SELECT COUNT(DISTINCT salary) FROM emp;

O/P

count(distinct salary)

4

max()

 It returns the maximum i.e the largest value among all the values present in

that column

SQL query to find the Maximum salary

SELECT MAX(salary) FROM emp;

O/P

MAX(salary)

10000

min()

 It returns the minimum value i.e the smallest numerical value among all the

values present in that particular column

SQL query to find minimum salary

SELECT MIN(salary) FROM emp;

Result will be,

MIN(salary)

6000

sum()

 The sum function returns the arithmetic sum of all the values present in that

column

SQL query to find sum of salaries

SELECT SUM(salary) FROM emp;

Result of above query is,

SUM(salary)

41000

Find the 2nd highest salary of an employee (interview question)

 This is the most commonly asked interview question. Hence I recommend you

remember this example

 This solution uses a sub query to first exclude the maximum salary from the data set

and then again finds the maximum salary, which is effectively the second maximum

salary from the Employee table.

Select max(salary) from employee where salary < (select max(salary) from emp);

0/P

MAX(salary)

9000

How it works

 Here first we are creating a result set excluding first highest salary i.e max(salary)

 Again applying max(sal) on this result would Fetch the second highest salary

obviously

Ex No: 4 Query the database tables and explore sub queries and simple join operations.

Aim:

 To Query the database tables and explore sub queries and simple join operations.

Description:

 An SQL Join statement is used to combine data or rows from two or more

tables based on a common field between them.

 A sub query is a query that is nested inside a SELECT, INSERT, UPDATE,

or DELETE statement, or inside another sub query.

 Joins and sub queries are both used to combine data from different tables into

a single result.

What is a Subquery?

A subquery is a nested query (inner query) that’s used to filter the results of the outer

query. Subqueries can be used as an alternative to joins. A subquery is typically nested inside

the WHERE clause.

SQL Sub Query

A Subquery is a query within another SQL query and embedded within the WHERE clause.

Important Rule:

 A subquery can be placed in a number of SQL clauses like WHERE clause, FROM

clause, HAVING clause.

 You can use Subquery with SELECT, UPDATE, INSERT, DELETE statements

along with the operators like =, <, >, >=, <=, IN, BETWEEN, etc.

 A subquery is a query within another query. The outer query is known as the main

query, and the inner query is known as a subquery.

 Subqueries are on the right side of the comparison operator.

 A subquery is enclosed in parentheses.

 In the Subquery, ORDER BY command cannot be used. But GROUP BY command

can be used to perform the same function as ORDER BY command.

1. Subqueries with the Select Statement

SQL Subqueries are most frequently used with the Select statement.

Syntax

SELECT column_name

FROM table_name

WHERE column_name expression operator

(SELECT column_name from table_name WHERE ...);

Example

Consider the EMPLOYEE table have the following records:

ID NAME AGE ADDRESS SALARY

1 John 20 US 2000.00

2 Stephan 26 Dubai 1500.00

3 David 27 Bangkok 2000.00

4 Alina 29 UK 6500.00

5 Kathrin 34 Bangalore 8500.00

6 Harry 42 China 4500.00

7 Jackson 25 Mizoram 10000.00

The subquery with a SELECT statement will be:

SELECT *

 FROM EMPLOYEE

 WHERE ID IN (SELECT ID

 FROM EMPLOYEE

 WHERE SALARY > 4500);

This would produce the following result:

ID NAME AGE ADDRESS SALARY

4 Alina 29 UK 6500.00

5 Kathrin 34 Bangalore 8500.00

7 Jackson 25 Mizoram 10000.00

2. Subqueries with the INSERT Statement

 SQL subquery can also be used with the Insert statement. In the insert statement, data

returned from the subquery is used to insert into another table.

 In the subquery, the selected data can be modified with any of the character, date

functions.

Syntax:

INSERT INTO table_name (column1, column2, column3....)

SELECT *

FROM table_name

WHERE VALUE OPERATOR

Example

 Consider a table EMPLOYEE_BKP with similar as EMPLOYEE.

 Now use the following syntax to copy the complete EMPLOYEE table into the

EMPLOYEE_BKP table.

INSERT INTO EMPLOYEE_BKP

 SELECT * FROM EMPLOYEE

 WHERE ID IN (SELECT ID

 FROM EMPLOYEE);

3. Subqueries with the UPDATE Statement

The subquery of SQL can be used in conjunction with the Update statement. When a

subquery is used with the Update statement, then either single or multiple columns in a table

can be updated.

Syntax

UPDATE table

SET column_name = new_value

WHERE VALUE OPERATOR

 (SELECT COLUMN_NAME

 FROM TABLE_NAME

 WHERE condition);

Example

Let's assume we have an EMPLOYEE_BKP table available which is backup of

EMPLOYEE table. The given example updates the SALARY by .25 times in the EMPLOYEE

table for all employee whose AGE is greater than or equal to 29.

UPDATE EMPLOYEE

 SET SALARY = SALARY * 0.25

 WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP

 WHERE AGE >= 29);

This would impact three rows, and finally, the EMPLOYEE table would have the following

records.

ID NAME AGE ADDRESS SALARY

1 John 20 US 2000.00

2 Stephan 26 Dubai 1500.00

3 David 27 Bangkok 2000.00

4 Alina 29 UK 1625.00

5 Kathrin 34 Bangalore 2125.00

6 Harry 42 China 1125.00

7 Jackson 25 Mizoram 10000.00

4. Subqueries with the DELETE Statement

The subquery of SQL can be used in conjunction with the Delete statement just like any

other statements mentioned above.

Syntax

DELETE FROM TABLE_NAME

WHERE VALUE OPERATOR

 (SELECT COLUMN_NAME

 FROM TABLE_NAME

 WHERE condition);

Example

Let's assume we have an EMPLOYEE_BKP table available which is backup of

EMPLOYEE table. The given example deletes the records from the EMPLOYEE table for all

EMPLOYEE whose AGE is greater than or equal to 29.

DELETE FROM EMPLOYEE

 WHERE AGE IN (SELECT AGE FROM EMPLOYEE_BKP

 WHERE AGE >= 29);

This would impact three rows, and finally, the EMPLOYEE table would have the following

records.

ID NAME AGE ADDRESS SALARY

1 John 20 US 2000.00

2 Stephan 26 Dubai 1500.00

3 David 27 Bangkok 2000.00

7 Jackson 25 Mizoram 10000.00

Ex No: 5 Query the database tables and explore natural, equi and outer joins.

Aim:

 To Query the database tables and explore natural, equi and outer joins.

Different Types of SQL JOINs

Here are the different types of the JOINs in SQL:

INNER JOIN: Returns records that have matching values in both tables

LEFT (OUTER) JOIN: Returns all records from the left table, and the matched records from

the right table

RIGHT (OUTER) JOIN: Returns all records from the right table, and the matched records

from the left table

FULL (OUTER) JOIN: Returns all records when there is a match in either left or right table

Sample Table

EMPLOYEE

EMP_ID EMP_NAME CITY SALARY AGE

1 Angelina Chicago 200000 30

2 Robert Austin 300000 26

3 Christian Denver 100000 42

4 Kristen Washington 500000 29

5 Russell Los angels 200000 36

6 Marry Canada 600000 48

PROJECT

PROJECT_NO EMP_ID DEPARTMENT

101 1 Testing

102 2 Development

103 3 Designing

104 4 Development

1. INNER JOIN

Syntax

SELECT table1.column1, table1.column2, table2.column1,

FROM table1

INNER JOIN table2

ON table1.matching_column = table2.matching_column;

Query

SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT

FROM EMPLOYEE

INNER JOIN PROJECT

ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID;

Output

EMP_NAME DEPARTMENT

Angelina Testing

Robert Development

Christian Designing

Kristen Development

2. LEFT JOIN

Syntax

SELECT table1.column1, table1.column2, table2.column1,

FROM table1

LEFT JOIN table2

ON table1.matching_column = table2.matching_column;

Query

SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT

FROM EMPLOYEE

LEFT JOIN PROJECT

ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID;

Output

EMP_NAME DEPARTMENT

Angelina Testing

Robert Development

Christian Designing

Kristen Development

Russell NULL

Marry NULL

3. RIGHT JOIN

Syntax

SELECT table1.column1, table1.column2, table2.column1,

FROM table1

RIGHT JOIN table2

ON table1.matching_column = table2.matching_column;

Query

SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT

FROM EMPLOYEE

RIGHT JOIN PROJECT

ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID;

Output

EMP_NAME DEPARTMENT

Angelina Testing

Robert Development

Christian Designing

Kristen Development

4. FULL JOIN

Syntax

SELECT table1.column1, table1.column2, table2.column1,

FROM table1

FULL JOIN table2

ON table1.matching_column = table2.matching_column;

Query

SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT

FROM EMPLOYEE

FULL JOIN PROJECT

ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID;

Output

EMP_NAME DEPARTMENT

Angelina Testing

Robert Development

Christian Designing

Kristen Development

Russell NULL

Marry NULL

Ex No: 6 Write user defined functions and stored procedures in SQL

Aim:

Description:

 User Defined Functions in SQL

The UDF or User Defined Functions in SQL Server are like methods in any other programming

language that accepts the parameters, performs complex calculations, and returns the result

value.

Types of Functions in SQL Server

There are two types of SQL Server functions:

Built-in Functions

All the built-ins supported by Microsoft are called System functions. We don’t have to bother

about the logic inside them because they cannot be modified. For example, Mathematical,

Ranking, and String are some of the many built-in functions.

The aggregate functions to find the sum, minimum value, and an average value is mostly used

in system methods. And finding the current system date and time is also the most frequent one.

User Defined Functions

SQL Server allows us to create our methods called user defined functions. For example, if we

want to perform some complex calculations, then we can place them in a separate method and

store it in the database. Whenever we need the calculation, we can call it. There are three types

of SQL functions:

Scalar: It returns a single value. Generally, we have to define the body between BEGIN …

END block, but for inline scalar function, you can omit them. We can use any data type as the

return type except text, image, ntext, cursor, and timestamp.

Table Valued: It is a user defined function that returns a table.

Inline Table valued: It returns a table data type based on a single SELECT Statement.

Advantages of UDFs

1. The SQL Server User defined functions prevent us from writing the same logic multiple

times.

2. Within the Database, you can create the method once and call it n number of times.

3. They reduce the compilation time of queries by catching the execution plan and reusing

them.

4. This UDF can help us to separate the complex calculations from the regular query so

that we can understand and debug the query quicker and better.

5. It reduces the network traffic because of its cache plan

6. They are also used in the WHERE Clause as well. By this, we can limit the number of

rows sent to the client.

SQL User Defined Functions Syntax

The syntax of the SQL Server functions or UDF is

CREATE FUNCTION Name(@Parameter_Name Data_type,

 @Parameter_Name Data_type

)

RETURNS Data_Type

AS

 BEGIN

 -- Function_Body

 RETURN Data

 END

 Return_Type:

1. Data Type: Please specify the data type of return value. For example,

VARCHAR, INT, FLOAT, etc.

2. Data: Please specify the return value, and it should match the Data Type. It can

be a single value or Table.

 Name: You can specify any name you wish to give other than the system reserved

keywords. Please try to use meaningful names so that you can identify them easily.

 @Parameter_Name: Every method accepts zero or more parameters; it completely

depends upon the user requirements. While declaring the parameters, don’t forget the

appropriate data type. For example (@name VARCHAR(50), @number INT)

 Function_Body: Any query or any complex mathematical calculations you want to

implement in this particular method.

Optimal Solution (Alternative Solution for above question)

The concept of functions in SQL is similar to other programming languages like Python. The

major difference being the way they are implemented. There are two main types of user-

defined functions in SQL based on the data they return:

1. Scalar functions: These types of functions return a single value, i.e. float, int, varchar,

date time, etc.

2. Table-Valued functions: These functions return tables.

Creating functions

Scalar functions

Below is the definition of a simple function. It takes in two numbers and returns their sum.

Since this function returns a number, it is a scalar function.

CREATE FUNCTION scalar_func

 (

 @a AS INT, -- parameter a

 @b AS INT -- parameter b

)

 RETURNS INT -- return type

 AS

 BEGIN

 RETURN @a + @b -- return statement

 END;

 We use the Create function command to define functions. It is followed by the name of

the function. In the above example, the name of the function is scalar_func.

 We need to declare the parameters of the function in the following format.

@VariableName AS Data Type

In our above example, we have defined two integer parameters a and b.

 The return type of the result has to be mentioned below the definition of the parameters.

In the above example, we are returning the sum that is an integer.

 After the return statements, we create a BEGIN ... END block that contains the logic of

our function. Although in this case, we have a single return statement, we don’t need

a BEGIN ... END block.

Table-valued functions

Before creating a table-valued function, we will create a simple table.

-- Creating new table

 CREATE TABLE TEST(

 num1 INT,

 num2 INT

);

 -- Inserting values into new table

 INSERT INTO TEST

 VALUES

 (1,2),

 (2,3),

 (4,5);

The table contains 2 columns. We will create a function that returns a new table with an extra

column. This extra column will contain the sum of numbers in the column num1 and

column num2.

CREATE FUNCTION table_valued_func()

 RETURNS TABLE

 AS

 RETURN

 -- statement to calculate sum

 SELECT num1 , num2, num1 + num2 AS 'SUM'

 FROM TEST;

 The function above does not take in any parameter.

 The SQL statement simply calculates the sum and stores it in a new column

named SUM.

